The key role of extinction learning in anxiety disorders: behavioral strategies to enhance exposure-based treatments

Andre Pittiga, Linda van den Berga, and Bram Vervlietb,c

\textbf{Purpose of review}

Extinction learning is a major mechanism for fear reduction by means of exposure. Current research targets innovative strategies to enhance fear extinction and thereby optimize exposure-based treatments for anxiety disorders. This selective review updates novel behavioral strategies that may provide cutting-edge clinical implications.

\textbf{Recent findings}

Recent studies provide further support for two types of enhancement strategies. Procedural enhancement strategies implemented during extinction training translate to how exposure exercises may be conducted to optimize fear extinction. These strategies mostly focus on a maximized violation of dysfunctional threat expectancies and on reducing context and stimulus specificity of extinction learning. Flanking enhancement strategies target periods before and after extinction training and inform optimal preparation and post-processing of exposure exercises. These flanking strategies focus on the enhancement of learning in general, memory (re-)consolidation, and memory retrieval.

\textbf{Summary}

Behavioral strategies to enhance fear extinction may provide powerful clinical applications to further maximize the efficacy of exposure-based interventions. However, future replications, mechanistic examinations, and translational studies are warranted to verify long-term effects and naturalistic utility. Future directions also comprise the interplay of optimized fear extinction with (avoidance) behavior and motivational antecedents of exposure.

\textbf{Keywords}

anxiety disorders, enhancement strategies, exposure therapy, fear extinction, inhibitory learning

\textbf{INTRODUCTION}

The effectiveness of exposure-based interventions for anxiety disorders has been well documented \([1–3]\), but not all patients benefit equally well \([4]\). Extinction learning is seen as a major mechanism for the reduction of fear during exposure therapy and, thus laboratory extinction procedures are used as experimental models for exposure-based interventions \([5]\). Current research targets extinction deficits in patients with anxiety disorders and potential strategies to enhance extinction learning to pave the way for treatment optimization. These strategies aim at boosting fear extinction in the short term as well as in the long term to account for the challenges set by relatively high rates of nonresponse and relapse after exposure-based interventions. This review selectively focuses on an overview and most recent findings on innovative behavioral enhancement strategies to provide tentative clinical implications and open questions for future research.

\textbf{THE KEY ROLE OF EXTINCTION IN ANXIETY DISORDERS}

Extinction of fear occurs when fear decreases during repeated exposure to a previously conditioned...
KEY POINTS

- Extinction learning is a key mechanism of exposure-based interventions. Behavioral strategies to optimize fear extinction may offer cutting-edge clinical implications for psychotherapist conducting exposure exercises.
- Procedural strategies may enhance exposure exercises by focusing on maximized violation of threat expectancies, increasing variability, and regulating specific emotions.
- Flanking strategies may support preparation and post-processing of exposure and thereby enhance general learning, memory consolidation, and retrieval.
- As fear extinction hardly generalizes across stimuli, the next target is to develop and test procedural and flanking strategies to augment extinction generalization.
- Apart from replications and mechanistic examinations, clinical translation calls for an individualized conceptualization of enhancement strategies to balance optimal extinction learning with preceding and subsequent therapeutic strategies and the individual’s motivation to conduct exposure.

Mood and anxiety disorders

A variety of strategies to boost extinction are investigated by current research. Neuroscientific approaches unveiled the usefulness of cognitive enhancers and pharmacological agents, such as d-cycloserine, oxytocin, or cannabinoids (for recent reviews see [33*–42*]) as well as neuromodulation of

stimulus which is now presented in the absence of the unconditioned stimulus. The original fear association (excitatory conditioned stimulus–unconditioned stimulus association) and the extinction association (inhibitory conditioned stimulus–no unconditioned stimulus association) now compete and the conditioned stimulus becomes an ambiguous stimulus (even if it currently does not trigger fear; [6–8]). Extinction associations are typically weaker compared to the original fear associations resulting in the recurrence of conditioned fear responding (return of fear) after re-presentation of the unconditioned stimulus (reinstatement; [9]), change of surrounding context (renewal; [10]), or passage of time (spontaneous recovery; [11]).

Previous reviews have concluded that individuals with anxiety disorders generally show impaired extinction learning and memory [12–14,15*,16, 17,18*]. Importantly, this is confirmed by a recent meta-analysis on 963 patients from 44 studies [15*]. Results demonstrated that patients display increased fear responses to conditioned safety stimuli during fear acquisition. During extinction training, patients showed stronger and longer lasting fear responses to the fear stimulus under extinction. These learning deficits indicate impaired ‘fear inhibition’ under safety and/or increased ‘fear generalization’ to safe stimuli that resemble the conditioned fear stimulus. These findings have since been further replicated [19–21] and illustrate that individuals with anxiety disorders show deficits in learning processes that are essential for therapeutic change by means of exposure-based interventions. In line with this, extinction response patterns were found to predict treatment outcome in obsessive–compulsive [22] and posttraumatic stress disorder [23,24]. However, more research on other anxiety disorders is needed, especially because the predictive value of fear extinction for exposure-based treatments may crucially support the ecological validity of the experimental model [25].

Apart from fear learning toward a specific stimulus, fear generalization has recently sparked research in preclinical anxiety research, as it addresses the broad array of fear-provoking situations in most anxiety patients [26,27]. Generalization is studied by assessing fear levels, which are elicited by stimuli that resemble the original fear-conditioned stimulus to a variable extent. The main goal is to understand the underlying generalization mechanisms and, eventually, to constrain the overgeneralized fears as a means to treat anxiety disorders. Unfortunately, extinction generalization, as the counterpart to fear generalization, has received less attention, despite its relevance for improving exposure effects beyond the specific feared situations used in treatment. Typically, a different but similar stimulus is put to extinction and residual fear to the original fear stimulus is taken as a measure of extinction generalization. Human fear conditioning studies so far revealed little fear reduction to the original stimulus [28,29], even when multiple similar stimuli were extinguished that together contained all its features [10,30]. Equally, low levels of extinction generalization were found between two stimuli that belonged to the same de novo created category [31]. Individual differences such as attentional control may, however, influence the amount of extinction generalization [32]. These studies have paved the way for an in-depth analysis of fear extinction generalization and how to overcome its boundaries in extinction-based treatments. However, given the limited findings on extinction generalization, current enhancement strategies are mostly confined to the original fear stimulus.

ENHANCEMENT OF EXTINCTION AND CLINICAL IMPLICATIONS

A variety of strategies to boost extinction are investigated by current research. Neuroscientific approaches unveiled the usefulness of cognitive enhancers and pharmacological agents, such as d-cycloserine, oxytocin, or cannabinoids (for recent reviews see [33*–42*]) as well as neuromodulation of
relevant brain areas [43,44,45]. On the other hand, pharmacological agents that are often prescribed as anxiolytics, such as benzodiazepine, have been found to impair fear extinction [46].

‘Behavioral’ strategies directly inform psychotherapeutic approaches. Most behavioral strategies are implemented during extinction training and thus inform the specific procedures of exposure exercises. Additional flanking strategies target intervals before and after extinction training and may thus inform optimal preparation and post-processing of exposure. A selective overview of behavioral strategies and assumed mechanisms is presented in Table 1. Craske et al. [69] offer an excellent review of past findings and clinical case formulations for some of these strategies. To maximize impact on

<table>
<thead>
<tr>
<th>Table 1. Overview of behavioral strategies to enhance fear extinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Procedural strategies implemented during extinction training</td>
</tr>
<tr>
<td>Expectancy violation</td>
</tr>
<tr>
<td>Safety signals</td>
</tr>
<tr>
<td>Deepened extinction</td>
</tr>
<tr>
<td>Occasional reinforced extinction</td>
</tr>
<tr>
<td>Variability</td>
</tr>
<tr>
<td>Multiple contexts</td>
</tr>
<tr>
<td>Affect labeling</td>
</tr>
<tr>
<td>Sleep</td>
</tr>
<tr>
<td>Novelty outcome</td>
</tr>
<tr>
<td>Unconditioned stimulus devaluation</td>
</tr>
<tr>
<td>Flanking strategies implemented before or after extinction training</td>
</tr>
<tr>
<td>Retrieval cues</td>
</tr>
<tr>
<td>Sleep</td>
</tr>
<tr>
<td>Positive affect</td>
</tr>
<tr>
<td>Physical exercise</td>
</tr>
<tr>
<td>Novelty context</td>
</tr>
<tr>
<td>Reconsolidation</td>
</tr>
</tbody>
</table>

Most strategies and their corresponding mechanisms are still under critical investigation. BDNF, brain-derived neurotrophic factor.
Mood and anxiety disorders

clinical practice, these case formulations and background information have been translated to various languages (German: [70*]; Spanish: [71*]; French: [72*]; Dutch: [73*]).

PROCEDURAL STRATEGIES DURING EXTINCTION TRAINING

Procedural strategies generally focus on creating optimal conditions for triggering dysfunctional threat expectancies that are at the core of the anxiety pathology [74*]. The goal is then to violate these expectancies via repeated exposures to the feared situations. Thus, increasing expectancies to allow maximal violation may represent a general strategy to augment extinction learning. Recent research, for instance, provided evidence that the combination of multiple fear stimuli during extinction training (‘deepened extinction’) attenuated the return of fear [49*]. Furthermore, although occasionally pairing, the fear stimulus with an averse outcome causes sustained fear during extinction training (‘occasional reinforced extinction’), first evidence suggests that it may also attenuate the return of fear in the long run [50]. Moreover, removal of ‘safety signals and behaviors’ (such as the presence of other persons, medication, or cell phones) may be another strategy to increase threat expectancies in the short run, but support their violation as the omission of the averse outcome during extinction training is not associated with the safety signal or behavior (for a critical evaluation see [48,69**]).

Another target for augmentation strategies is that fear extinction hardly generalizes to different stimuli and contexts, that is, fear likely returns when a different fear stimulus is encountered or if the current context differs from the extinction context [75,76], see also [77]. Different ways of increasing the ‘variability’ of extinction training may target this crucial issue. First, fear stimuli during exposure may be varied rather than repeatedly extinguishing the same stimulus (as in habituation protocols). Accordingly, exposing spider-phobic individuals to different spiders enhanced the long-term outcome of virtual reality exposure compared to a single spider exposure only [51*]. Second, the level of anxiety itself may represent a source of variability. For example, a spontaneous higher variability in fear levels during exposure tasks predicted better outcome in anxious children [78]. Moreover, greater variability in fear levels throughout exposure positively predicted outcomes in contamination and public speaking anxiety [79,80]. Third, varying the duration and spacing of extinction trials may also enhance exposure [69**,81]. Finally, variability may also be increased by varying the context of exposure (‘multiple contexts’; e.g., inside vs. outside, different internal contexts), which may attenuate context renewal. Similar to past results on multiple contexts [69*], current findings are still mixed. In a conditioning experiment, extinction in multiple context attenuated reinstatement, but not spontaneous recovery and context renewal [53]. Furthermore, exposure in multiple virtual contexts attenuated fear of spiders immediately after exposure, but no impact on the return of fear at a later test was observed [51*]. In contrast, exposure in multiple real-life contexts attenuated fear of spiders immediately after exposure and also attenuated the return of behavioral, self-reported, and physiological fear in the long run [52]. Given these mixed results, future research needs to address potential moderators or contextual features that may drive the attenuation of fear renewal.

Some behavioral strategies implemented during extinction training are supposed to target mechanisms other than the violation of expectancies or stimulus and context specificity. Verbally labeling the emotional content of a stimulus or emotional experiences (‘affect labeling’) may incidentally regulate the corresponding emotion, which involves similar prefrontal–amygdala regulations as in fear extinction [82*]. In public speaking anxiety, repeated affect labeling in combination with repeated speech exposures resulted in a steeper decline in physiological arousal following exposure than exposure alone; however, no effect was observed on self-reported anxiety [54*]. Further research on the augmentation effect of affect labeling is needed, especially, since this method implicitly is already a part of most exposure manuals.

FLANKING STRATEGIES BEFORE AND AFTER EXTINCTION TRAINING

Flanking strategies aim to provide conditions that support learning during extinction, consolidation of the extinction memory, and retrieval of this memory. For example, ‘physical exercise’ may increase memory and cognitive functions [83,84]. In line with this, exercising briefly before or after extinction training enhanced extinction of contextual fear in animals [62*]. In a pilot clinical trial, patients with posttraumatic stress disorder showed greater improvement after prolonged exposure when they exercised at moderate intensity prior to each exposure session [63**]. ‘Positive affect induction’ has recently been discussed as another strategy before extinction training as it translates recent findings that high dispositional positive
affect may be beneficial for extinction learning [85*] into therapeutic strategies. Positive mood induction by means of a positive imagery training indeed reduced the return of fear in a reinstatement test, but not for spontaneous recovery [61*]. This attenuation of fear recurrence may be linked to a reduction of negative valence of the fear stimulus under positive mood as sustained negative valence after extinction seems to predict reinstatement of fear [86*]. These two examples (physical exercise and positive mood induction) offer first support for an effective augmentation of exposure treatments by strategies that precede the actual exposure session.

Other strategies may specifically support the consolidation and retrieval of the extinction memory after an exposure session. Optimal effects of extinction training require accessibility of the corresponding memory in various contexts. ‘Retrieval cues’ [58] and ‘mental reversal’ [59] may augment this accessibility; however, research is still limited. ‘Sleep’ may represent another simple strategy to augment extinction memory as it improves memory consolidation [87–91]. In support, spider-phobic individuals who slept for 90 min after exposure showed lower self-reported fear and fear-related apprehension while approaching a spider 1 week later [60*]. These findings suggest that already acquired extinction learning is strengthened during sleep, so that conditions may be optimized for sufficient sleep after exposure. Interestingly, novel evidence also suggests that completely novel extinction learning may occur during sleep without prior learning under wakefulness. Specifically, participants were reexposed to a previously fear-conditioned tone in the absence of the aversive consequence either during wakefulness (i.e., standard extinction training) or during slow wave sleep [55*]. Surprisingly, when exposed to the tone for 10 min, both groups showed attenuated fear responses in a later test. These results provide first evidence for novel extinction learning during sleep. Although these results support a previous study [92], opposite results have also been reported (see [93*]). Given these mixed results, future research is required to determine if extinction training during sleep may further support exposure therapy.

Apart from the consolidation of extinction memory, behavioral strategies have also targeted the ‘reconsolidation’ of the original fear memory itself. A reactivation of a consolidated memory trace transfers the memory into a temporarily malleable state before being stored in long-term memory again, that is, reconsolidated [94]. This time window of reconsolidation allows manipulation of the labile memory and has thus become subject to extensive research on the possibility to change fear memories (for recent reviews see [95,96,97**]). Behavioral approaches aim to manipulate fear memories by presenting new or corrective information during malleability of the memory [98,99]. Initially, reconsolidation interference was assumed to actually erase fear-relevant memory traces. However, most recent studies not only found a restriction of the interference to physiological fear levels while leaving declarative knowledge about the unconditioned stimulus–conditioned stimulus association intact [100], but even a full return of fear after manipulation [101]. Thus, reconsolidation more likely appears to be highly dependent on the mismatch between the stored information and actual experience (prediction error). The extent of this mismatch may be the determining factor to evoke either the formation of a new, competitive memory trace (extinction) or the updating of the original trace (reconsolidation) [8,102–104]. Seen in this framework, reconsolidation may be seen as a precursor of or adaptive process alternative to extinction, both mapping onto the same dimension of the processing of corrective information. However, the repeated failures to reliably replicate the reconsolidation effect itself [105–109] constitute a serious problem for clinical translations. Once more, mechanistic research is needed to pinpoint the conditions for a successful augmentation of exposure-based interventions.

CONSIDERATIONS FOR FUTURE RESEARCH AND IMPLEMENTATION IN CLINICAL PRACTICE

Certainly, future research will continue to pinpoint the effects of specific strategies to enhance extinction in anxious individuals. However, several crucial issues need to be addressed to allow a successful clinical translation. First, many strategies have only been supported by a limited amount of studies (e.g., positive affect, affect labeling) and results for other strategies are still mixed (e.g., multiple contexts, removal of safety behaviors). Replications are thus needed to prove reliable augmentation effects. Furthermore, the impact of various strategies has only been tested for immediate learning during extinction training, but needs to be expanded to the return of fear at later test. Second, laboratory extinction procedures need to be replicated in clinical studies with anxious individuals to increase their ecological validity. Third, very little is known about the impact of fear extinction and enhancement strategies on actual behavior. As avoidance behavior is a key feature of all anxiety disorders, future studies need to address potential changes in avoidance. Fourth, to support dissemination,
promising strategies need to be evaluated in a broader context of (cognitive-) behavioral treatments, which may represent the biggest challenge to achieve clinical impact. In therapy, exposure cannot be limited to a single and highly standardized procedure, but rather consists of different stages, such as motivation, preparation, actual exposure, and maintenance of behavioral change [110]. The consequences of enhancement strategies for these stages have rarely been considered. For example, safety signals and behaviors have been discussed to optimize the motivational antecedents of exposure, which are characterized by approach-avoidance conflicts [111*,112,113*]. Despite a potentially detrimental effect on extinction learning, safety signals and behaviors may enhance the acceptability of exposure and, thereby, reduce dropouts and refusals [113*,114]. Such opposing effects call for an individualized conceptualization of enhancement strategies to balance optimal fear extinction with preceding and subsequent therapeutic strategies. This individualization requires the field of fear extinction research to broaden its scope when investigating enhancement strategies.

CONCLUSION

Fear extinction processes play a crucial role in the development and maintenance of anxiety disorders. Behavioral strategies to enhance extinction may provide powerful clinical applications to further maximize the efficacy of exposure-based treatments. However, for most potential strategies, replications and future research are needed to verify their beneficial effects on fear extinction, increase ecological validity, and test their naturalistic utility. Most importantly, strategies need to be tailored to the individual patient to allow optimal balance between compliance and extinction learning.

Acknowledgements

The authors thank Caroline Altus for her help with literature research.

Financial support and sponsorship

The work was supported by the research consortium on anxiety disorders, PROJECT-AD, funded by the German Federal Ministry of Education and Research (FKZ 01EE1402B). PROJECT-AD (‘Providing Tools for Effective Care and Treatment of Anxiety Disorders’) is one out of nine research consortia in the German Federal research program ‘Forschungszentrum zu psychischen Erkrankungen’ (2015–2019), funded by the Federal Ministry of Education and Research (BMBF; www.fzpe.de). PROJECT-AD comprises six projects; the presented work was derived in project P1 (PI: Hans-Ulrich Wittchen, Technische Universität Dresden) and P7 (PI Jürgen Hoyer, Technische Universität Dresden). This research was further supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (Vervliet).

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:
- of special interest
- of outstanding interest

Behavioral strategies to enhance fear extinction
Pittig et al.

tion of memories in PTSD: an fMRI and psychophysiological study of
extinction retention and fear renewal. J Neurosci 2014; 34:13435–
13444.

learning performance and its association with psychiatric symptoms in active

extinction in obsessive-compulsive disorder and its relation to exposure
856.

29. Lommen MJ, Engelhard IM, Sijbrandij M, et al. Pretrauma individual differ-
ences in extinction learning predict posttraumatic stress. Behav Res Ther

30. Orr SP, Lasko NB, Macklin ML, et al. Predicting posttrauma stress symp-
toms from pretrauma psychophysiological reactivity, personality traits and measures of

31. Vervliet B, Raes F. Criteria of validity in experimental psychopathology:
application to models of anxiety and depression. Psychol Med 2012;
42:2341–2344.

32. Dunszoom PE, Paz R. Fear generalization and anxiety: behavioral and neural

systematic review and implications for anxiety disorder research. Behav Ther

34. Vervliet B, Vansteenwegden D, Eelen P. Generalization of extinguished skin
conduction responding in human fear conditioning. Learn Mem 2004;

difference in extinction learning paradigms caused by a stimulus change after extinc-

36. Vervliet B, Kindt M, Vansteenwegden D, Hermans D. Fear generalization in
human memory of prior nonfearful experiences. Behav Res Ther 2010;

37. Vervoort E, Vervliet B, Bennett M, Baeyens F. Generalization of human fear
acquisition and extinction within a novel arbitrary stimulus category. PLoS
One 2014; 9:e89569.

38. Barry TJ, Griffith JW, Vervliet B, Hermans D. The role of stimulus specificity
and attention in the generalization of extinction. J Exp Psychol: Animal
Behav Processes 2015; 41:182–194. [Epub ahead of print]

cyloserine augmentation of exposure therapy for posttraumatic stress

40. The article offers most recent reviews on the impact of cognitive enhancers
-especially d-cyloserine)-on exposure treatment and potential boundaries.

-a moderator of d-cyloserine efficacy for enhancing exposure therapy in

42. Hofmann SG. D-cyloserine for treating anxiety disorders: making good
-exposures better and bad exposures worse. Depress Anxiety 2014;
31:175–177.

43. The article offers most recent reviews on the impact of cognitive enhancers
-especially d-cyloserine)-on exposure treatment and potential boundaries.

44. Hofmann SG, Fang A, Gutner CA. Cognitive enhancers for the treatment of

45. The article offers most recent reviews on the impact of cognitive enhancers
-especially d-cyloserine)-on exposure treatment and potential boundaries.

46. Hofmann SG, Otto MW, Pollack MH, Smits JA. D-cyloserine augmentation
-of cognitive behavioral therapy for anxiety disorders: an update. Curr Psy-
chiatry Rep 2015; 17:532.

47. The article offers most recent reviews on the impact of cognitive enhancers
-especially d-cyloserine)-on exposure treatment and potential boundaries.

48. Mar N-M, Lonk SF, Mlad MR. Augmentation of evidence-based psy-
chotherapy for PTSD with cognitive enhancers. Curr Psychiatry Rep
2015; 17:339.

49. The article offers most recent reviews on the impact of cognitive enhancers
-especially d-cyloserine)-on exposure treatment and potential boundaries.

50. McGuire JF, Lewin AB, Storch EA. Enhancing exposure therapy for anxiety
disorders, obsessive-compulsive disorder and posttraumatic stress disorder.

51. The article offers most recent reviews on the impact of cognitive enhancers
-especially d-cyloserine)-on exposure treatment and potential boundaries.

52. My skiw JC, Inquideto I, Furrni CRG. Modulation of the extinction of fear

53. The article offers most recent reviews on the impact of cognitive enhancers
-especially d-cyloserine)-on exposure treatment and potential boundaries.

extinction with deep brain stimulation: evidence for medial orbital

55. Marin M-F, Campodon JD, Dougherty DD, Mlad MR. Device-based brain
stimulation to augment fear extinction: implications for PTSD treatment and
beyond. Depress Anxiety 2014; 31:269–278.

56. Overview on the underlying neural mechanisms of fear and their clinical implica-
tions for exposure-based interventions. Specifically, methods of deep-brain stim-
ulation, vagus nerve stimulation, transcranial direct current stimulation, and
transcranial magnetic stimulation are discussed.

57. Graham BM, Callaghan BL, Richardson R. Bridging the gap: lessons we
-have learnt from the merging of psychology and psychiatry for the opti-
misation of treatments for emotional disorders. Behav Res Ther 2014; 62:3–
18.

58. Overview on combination of traditional pharmacological treatments and new
pharmacological agents with cognitive behavioral therapy.

exposure by optimizing inhibitory learning: a randomized controlled trial.

60. Lovblond PF, Mitchell CJ, Minard E, et al. Safety behaviours preserve threat
beliefs: protection from extinction in posttraumatic stress disorder by an avoidance

61. Culver NC, Vervliet B, Craske MG. Compound extinction: using the Re-
corla–Wagner model to maximize exposure therapy effects for anxiety

62. One of the few experimental fear conditioning studies in humans, which investi-
gated and supported the strategy of deepened extinction by compound cues
-improved by a single stimulus extinction procedure.

63. Culver NC. Extinction-based processes for enhancing the effectiveness of

64. Shibah Y, Schehorn I, Pauli P, Muehsberger A. Effect of combined multiple
contexts and multiple stimuli exposure in spider phobia: a randomized clinical

65. A human fear conditioning study using virtual reality to investigate the combined
impact of multiple cues (different spiders) and multiple contexts (different rooms) in
extinction training for spider-phobic individuals.

66. Bandarian-Balooch S, Neumann DL, Boschen MJ. Exposure treatment in
multiple contexts attenuates return of fear via renewal in high spider fearful

67. Dunszoom JE, Ahs F, Zielinski DJ, LaBar KS. Extinction in multiple reality
contexts diminishes fear reinstatement in humans. Neurol Rep 2014;
113:157–164.

68. Niles AN, Craske MG, Lieberman MD, Hur C. Affecting learning and
68:27–38.

69. The first study that provided evidence that affect during a speech task
exposure may be beneficial for exposure therapy. After exposure, affect labeling
was associated with a greater reduction of physiological activation compared with
a nonlabeling group. However, no effects on self-reported anxiety were found.

70. He J, Sun H-Q, Li X, et al. Extinction of conditioned fear stimuli during
slow wave sleep on fear memory extinction in humans. Sleep 2015; 38:429–
431.

71. A healthy human fear conditioning study that used auditory fear conditioning (tone
paired with electric stimulus) during wakefulness. Subsequently, the fear
relevant vs. control tone was presented for different durations (3 vs. 10 min) during slow
wave sleep for different groups. Participants were re-exposed to the 10 min
combined stimulus either during slow wave sleep and wakefulness exhibited
attenuated fear responses.

72. Dunszoom JE, Campese VD, Cecchi AO, et al. Novelty-facilitated extinction:
providing a novel outcome in place of an expected threat diminishes recovery

73. Haessen K, Vervliet B. Beyond extinction: habituation eliminates conditioned
skin conductance across contexts. Int J Psychophysiol 2014. [Epub ahead of
print]

74. Culver NC, Stoyanova M, Craske MG. Clinical relevance of retrieval cues for

75. My skiewsk J, Craske MG, Eckvii AM, Labus JJ. Mental reinstatement of
context and return of fear in spider-fearful participants. Behav Ther 2006;
37:49–60.

77. Individuals with spider phobia completed a virtual reality, one-session exposure
exposure either for 90 min or stayed awake for 30 min. Afterwards, results indicate that sleep
may enhance the reduction of self-reported fear.
Mood and anxiety disorders

62. The first human fear conditioning study that used positive mood induction before extinction training. Results indicate that positive mood reduces the negative value of the fear stimulus after extinction and also reduces reinstatement of fear under stressful conditions.

Three experiments in rats, which show that a running exercise can enhance acquisition, extinction, and reconsolidation of context-conditioned fear, depending on the temporal relationship of exercising and the different learning phases.

The study showed greater improvement in symptoms related to posttraumatic stress disorder when prolonged exposure was combined with moderate exercising before each exposure session compared with no exercise. Furthermore, exercising increased brain-derived neurotrophic factor (BDNF), which is associated with long-term learning and memory.

Detailed overview of behavioral strategies to augment extinction learning, their potential mechanisms, and clinical case formulations for various anxiety disorders.

German translation of clinical case formulations and research findings for different behavioral strategies was adapted from [69].

Spanish translation of clinical case formulations and research findings for different behavioral strategies was adapted from [69].

French translation of clinical case formulations and research findings for different behavioral strategies was adapted from [69].

Dutch translation of clinical case formulations and research findings for different behavioral strategies was adapted from [69].

Brief overview of the role of expectancies, their persistence, and change as core feature of different psychological disorders including anxiety disorders.

82. Migues G, Witzauer JE, Laborda MA, Miller RR. Trial spacing during extinction of fear under stressful conditions.

A recent functional magnetic resonance imaging study that supports shared neural mechanisms of reappraisal as intentional emotion regulation strategy and affect labeling as incidental emotion regulation strategy. The neural mechanisms support an activation of prefrontal areas and decreased activity in the amygdala similar to fear extinction.

A human pain study showing that low dispositional positive affect may be associated with a deficit in safety learning during extinction training and that high dispositional positive affect may compensate for the detrimental effect of elevated trait anxiety on extinction learning.

A recent human fear conditioning study that showed that a more negative valence of a fear stimulus after extinction enhances fear reconsolidation in humans.

A brief commentary comparing the experimental designs and findings of four recent studies that investigated novel extinction learning during sleep (including references 55 and 92).

Extravert overview of human reconsolidation research, disclosing gaps in the literature and giving important implications for future research.

A healthy human fear conditioning study that investigated approach-avoidance conflicts by testing the impact of fear acquisition on reward-related decision making. Results show that especially high trait-anxious individuals chose to avoid options associated with the feared stimulus, even if these decisions resulted in lower gains.

The study investigates the judicious use of safety behavior to enhance the acceptability of exposure. Healthy individuals completed exposure exercises with and without safety behavior. Result indicates that exposure with safety behaviors was associated with higher acceptability ratings, higher behavioral approach, and lower subjective fear during exposure.